
CCASM 3.03

 User's Guide

6809/6309 CROSS ASSEMBLER FOR WINDOWS
COPYRIGHT (C) 2002-2004 BY ROGER TAYLOR SOFTWARE

ALL RIGHTS RESERVED

Distributed by:
www.coco3.com

The TRS-80/Tandy Color Computer Resource Site

Table of Contents

Introduction .. 2
For Beginners ... 2
For Experts ... 3

Summary of Features ... 3
Terms Used In This Guide ... 3
Command Options ... 4
The CPU Registers ... 5

6809 Registers .. 5
6309-Only Registers .. 5

Source Code Format .. 6
Source Code Lines .. 6

Labels and Symbols ... 7
Standard Labels .. 7
Local Labels ... 7
Branch Points ... 8

Psuedo-Ops and Directives ... 9
Conditional Assembly .. 10

Mnemonics ... 11
Loading & Moving Data Around ... 11
Comparing, Testing, and Clearing ... 11
Saving and Restoring Registers on the Stacks 12
Doing Arithmetic .. 12
Moving Around Within Your Programs 12
Doing Bit-Based Operations ... 13
Operating Between Registers ... 13
Handling Interrupts .. 13
Unconditional Relative Branches ... 14
Conditional Relative Branches .. 14

Operands ... 15
When a Direct Value Is Expected ... 15
When Memory Access Is Expected ... 15
When a String or Character Is Expected 15
Indexed Memory ... 16

Expressions .. 17
Operations ... 17
Comparisons .. 17
Order Of Operations .. 17
Expression Examples ... 18

Structures, Unions, and Namespaces ... 19
Structures .. 19
Unions ... 20
Namespaces ... 20

Table of Contents

Procedures ... 22
Declaring Procedures ... 22
Calling Procedures ... 23
Inside of Procedures .. 24
Accessing Procedure Parameters ... 25
Local Variables .. 25
Activation Records ... 26

Instruction Examples ... 27
6809 Examples ... 27
6309 Examples ... 28
Sample Program ... 29

File Formats ... 31
Multi-Record File Format .. 31
Single-Record File Format .. 31
No Records File Format .. 31

6809 Opcode Summary ... 33
Hexidecimal, Binary, and Decimal Conversions 36

1

Introduction

CCASM is a Windows-based 6809/6309 machine language cross-assembler created
with TRS-80 Color Computer and Vectrex users in mind. The command is issuable
from any console prompt, batch file, another program, etc. Specifying a source
code file and some optional parameters, your programs can be quickly assembled
and ready to run on any 6809 or 6309-based computer. For CoCo users, most
Tandy EDTASM source code can be assembled without any modifications.

For Beginners

If you've never worked with assembly, many examples are given in this guide and
the included source code files for helping you learn how to accomplish common
tasks. Once you start putting together small routines and programs, there's no
limit to what can be created. Learn the language first and your programming style
will build over time.

Ofcourse, there's no certain style required to create great ML programs. CCASM
also offers high-level functions to help take the pain away from writing raw
assembly programs.

For Experts

You're definately not limited to assembling just EDTASM-compatible source code.
Many other powerful psuedo-ops, directives, and instructions are available which
will help you create programs that can be bigger, faster, and easier to build.

You have the leisure of namespaces, structures, procedures, procedure libraries
and more, allowing you to create much more powerful programs in less time than
it would take using a bare-bones assembler.

As CCASM advances, more options, features, and high-level structures will be
added making it one of the most powerful 6809/6309 assemblers available.

2

Summary of Features

program type: 32-bit Windows command prompt
target systems for assembled code: Tandy CoCo 1,2,3; Vectrex, and any 6809
or 6309-based computer
assembled files: 'LOADM' record format, ROM and ROM-like images
accepted source code formats: Tandy EDTASM and variants
source code file compatibility: CoCo text editors, PC text editors, various LF/CR
support
maximum source code lines: 32,768
maximum nested include levels: virtually unlimited
assembly passes: 2
nested conditional assembly: yes
expression evaluator: unlimited nesting, logical operations
structures: yes
procedures: yes, nesting & local variable support

Terms Used In This Guide

white space (TABs or SPACEs between source code line fields)
symbol/label (alpha-numeric name that translates into a value or address)
mnemonic (CPU instruction not including any operand)
operand (data used by the mnemonic to form the instruction)
conditional assembly (code segments assembled only if a case is true or false)
PC (the CPU's program counter register)
reg. (CPU register/accumulator/pointer)
expression (a way of specifying a simplified or mathematical value)
void (reserved but uninitialized memory)
word (2-byte/16-bit data)
dword (4-byte/32-bit data)
MSB (most-significant byte, leftmost as in MSB/LSB, lower memory address)
LSB (least-significant byte, rightmost as in MSB/LSB, higher memory address)
MSBit (most-significant bit, leftmost as in bbbbbbbb)
LSBit (least-significant bit, rightmost as in bbbbbbbb)
Boolean (0 means False and <>0 means True)
data structure (related group of data objects)

3

Command Options

-l [dump assembly listing]
-s [dump symbols]
-sa [dump symbols, including automatic & local labels]
-o= [override default filename for binary output]
-bin [assemble as Tandy CoCo 'LOADM/EXEC' file (default)]
-sr [assemble as single-record file having only one origin]
-nr [assemble with no origin records]
-rom{=} [assemble as ROM image of 2k,4k,{8k},16,32,64,128,256]
-h [show help messages along with any errors]
-d [show debug messages]
-z [internal debug listing]

Example of the -o option

cm array -o=array.sys
(assemble array.asm to array.sys)

Examples of the -rom option

cm mygame -rom
(assemble mygame.asm to mygame.rom of exactly 8192 bytes)

cm newbasic -rom=32k
(assemble newbasic.asm to newbasic.rom of exactly 32768 bytes)

ROM image files are pure data and are compatible with all or most EPROM-burning
software, even if you need to rename the files so they will load into your utility.

Example of the -l option

cm mygame -l >listing.txt
(assemble mygame.asm to mygame.bin and send a listing to the file "listing.txt")

Example of the -s option

cm pacman -s
(assemble pacman.asm to pacman.bin and dump the symbol table to the screen)

4

The CPU Registers

6809 Registers

a [8-bit accumulator]
b [8-bit accumulator]
d [16-bit concatenated register of a/b]
x [16-bit pointer]
y [16-bit pointer]
u [User Stack or 16-bit pointer]
s [System Stack or 16-bit pointer]
dp [Direct-Page Register]
pc [16-bit Program Counter]
cc [8-bit CPU condition-code register {E-F-H-I-N-Z-V-C}]

cc flags:
E [Entire State on stack - determines RTI action]
F [Fast Interrupt mask - set to enable FIRQ-to-CPU]
H [Half Carry - carry out of bit 3 of arithmetic data]
I [IRQ interrupt mask - set to enable IRQ-to-CPU]
N [Negative Code - automatically set if result is negative]
Z [Zero Code - set if result is zero]
V [Overflow Code - set for arithmetic overflow]
C [Carry Code - set for math carries and borrows]

6309-Only Registers

The 6309 CPU has all of the 6809 registers, plus:

e [8-bit accumulator]
f [8-bit accumulator]
w [16-bit concatenated reg. of e/f]
q [32-bit concatentated reg. of a/b/e/f]
v [16-bit accumulator] *
z [Zero reg.]*
0 [Zero reg.] *
00 [alternate Zero reg.] **
md [Mode/Error reg.]

Note that register names are case-insensitive, meaning a is the same as A, and x
is the same as X, etc.
* used by inter-register instructions only
** there are two Zero registers in the 6309 CPU

5

Source Code Format

A variety of white space methods may be used in your source code. An intelligent
parsing routine is used for breaking source code lines down into the fields used to
build each instruction. CCASM will generate an error if the required line format is
not met or if the combined fields do not form a valid function.

Source code lines:

1) are separated into fields by SPACEs or TABs
2) can optionally have a line number in the first field
3) can optionally have a label in the first field (second field if a line number is
present)
4) must have a SPACE or TAB before all mnemonics, psuedo-ops, and trailing
comments.

The following examples show the typical layout of any given source code line. The
'-' character represents a SPACE or TAB used to separate fields.

Label-Mnemonic-Operand-Comment
Label-Mnemonic--Comment
Label-Mnemonic
-Mnemonic-Operand
-Mnemonic--Comment
LineNumber-Label-Mnemonic-Operand-Comment
LineNumber--Mnemonic-Operand-Comment

A TAB-formatted line might look like this:

start jsr subroutine this is a comment

Or, since line numbers are supported:

00010 start jsr subroutine this is a comment

A SPACE-formatted line might look like this:

00010 start jsr subroutine ;this is a comment

6

Labels and Symbols

Label and symbol names:

1)should generally be kept under 32 character long
2) should not be named the same as any reserved symbol
3) should not contain any mathematical characters or names used by the
expression evaluator

Although the CCASM preference is to use lowercase-oriented source code, capitol
letters are welcome if that is what you prefer. However, symbol names are case-
sensitive. In other words, the symbol "color" is not the same as the symbol
"Color".

Automatic Symbols

The following symbols and their values are automatically set by the assembler.

 * [returns the address of the Program Counter]
 . [returns the offset into the operand]
 sizeof{struct} [returns the size of a data structure]

Standard Labels:

 jmp label
 bsr some_routine

Local Labels:

Local labels are resusable labels containing at least one '@' character or '?'
character and generally kept short. Local labels may be used to save symbol table
space or to avoid having to think of many unique label names in large programs.

You can reuse the same local label name many times as long as a blank line
separates them. This scheme can be pictured as local blocks of source code, each
possibly containing local labels used in other blocks. Local blocks cannot access
local labels used in other blocks.

 lbra a@
 bra ?b
 jmp @@exit

7

Branch Points:

Branch Points are very similar to local labels but they are much more efficient and
easier to type. They can also save you lots of time thinking of named labels.

Using the single-character label called '!', you can branch forward and backward in
your source code to the nearest Branch Point. Debugging your programs can be
more difficult if you use too many Branch Points; therefore, they are best for short
code segments.

bra < branch backward to nearest Branch Point label
bra > branch forward to nearest Branch Point label

example:

! lda ,x+ grab a byte from table
bne < branch upwards to last “!” label
bra > branch downwards to next “!” label
nop

! rts exit

8

Psuedo-Ops and Directives

The following list of assembler commands are used in the mnemonic/operand fields
just like regular instructions, only they generate data or perform special assembler
functions; they do not automatically create CPU instructions.

title {string} [set the title of the source code]
org {address} [set/change program origin address]
include {filename[.asm]} [insert/include another source file at the current line]
includebin {filename[.bin]} [insert any file into the codestream]
proc {parameter:type,parameter:type...} [define a procedure]
call {procedure,param1,param2,param3...} [call a procedure]
namespace {label} [causes {label} to prefix to all subsequent labels]
endnamespace [end all namespaces in effect]
struct [start a data structure containing fields]
endstruct [end a structure]
union [start a union structure where the PC doesn't advance per object]
endunion [end a union structure]
page [inject a FORM-FEED character into the assembly listing]
setdp {0-255} [inform the assembler of the Direct Page register value]
{label} equ {expression} [assign a value to a label, becoming a symbol]
{label} = {expression} [assign a value to a label, becoming a symbol]
{label} set {expression} [reassign a value to a label, becoming a symbol]
even [align the PC on an even address]
odd [align the PC on an odd address]
align [align the PC on any boundary]
fcc {"string"} [form constant character string]
fcn {"string"} [form null-terminated string, adds (0) to end]
fcs {"string"} [form sign-terminated string, sets bit 7 of last character]
fcr {"string"} [form carriage-return/null-terminated string, adds 13,0 to end]
fcb {value,expression...} [form constant byte, 8-bit data]
fdb {value,expression...} [form double-byte/word/16-bit data]
fqb {value,expression...} [form quad-byte/dword/32-bit data]
fzb/rzb {number of cleared bytes} [form # of initialized byte(s)]
fzd/rzd {number of cleared words} [form # of initialized double-byte(s)]
fzq/rzq {number of cleared dwords} [form # of initialized quad-byte(s)]
rmb {number of voided bytes} [reserved memory, creates void]
rmd {number of voided words} [reserved memory, creates void]
rmq {number of voided dwords} [reserved memory, creates void]
end {address} [marks the end of assembly, used only once in master source
file]

9

Conditional Assembly

Source lines between a condition test and an end condition statement are
assembled only if the condition is true.

if {boolean expression} [start conditional assembly segment if condition=true]
ifeq [assemble segment if expression evaluates to zero]
ifne [assemble segment if expression evaluates to nonzero]
iflt [assemble segment if expression yields a negative result]
ifgt [assemble segment if expression yields a positive result]
ifle [assemble segment if expression yields a negative or zero result]
ifge [assemble segment if expression yields a positive or zero result]
cond {boolean expression} [start conditional assembly segment if result=true]
ifp1 [assemble source segment only if in assembly pass #1]
ifp2 [assemble source segment only if in assembly pass #2]
endif {end an if conditional assembly segment]
endc [end a cond conditional assembly segment]
endp [end an ifp1/ifp2 conditional assembly segment]

Important note: Make sure all symbols to be used in conditional assembly
expressions are predefined. Forward references are not supported within
conditional assembly expressions. Nesting is supported up to 32 levels (virtually
unlimited).

10

Mnemonics

All legal 6809 mnemonics are supported by the 6309 CPU. Mnemonics and
registers in italics are supported only by the 6309 CPU.

Loading & Moving Data Around

ld{a,b,d,x,y,u,s,e,f,w,q,md} {memory,value} [load data into a reg.]
st{a,b,d,x,y,u,s,e,f,q,w} {memory} [store reg. contents to mem.]
ldbt {a,b} , {source bit} , {dest. bit} , {DP mem.} [transfer mem. bit into reg.
bit]
stbt {a,b} , {source bit} , {dest. bit} , {DP mem.} [transfer reg. bit into mem.
bit]
band {a,b} , {source bit} , {dest. bit} , {DP mem.} [AND mem. bit into reg.]
biand {a,b} , {source bit} , {dest. bit} , {DP mem.} [AND complimented mem.
bit into reg.]
bor {a,b} , {source bit} , {dest. bit} , {DP mem.} [OR mem. bit into reg.]
bior {a,b} , {source bit} , {dest. bit} , {DP mem.} [OR complimented mem. bit
into reg.]
beor {a,b} , {source bit} , {dest. bit} , {DP mem.} [EOR mem. bit into reg.]
bieor {a,b} , {source bit} , {dest. bit} , {DP mem.} [EOR complimented mem.
bit into reg.]

copy {source reg.,destination reg.} [copy block of memory to another address]
copy- {source reg.,destination reg.} [copy block of memory in reverse]
imp {source reg.,destination reg.} [implode block of memory into one address]
exp {source reg.,destination reg.} [expand target into block of memory]
tfrp [same as copy] *
tfrm [same as copy-] *
tfrs [same as imp] *
tfrr [same as exp] *

* Used by the "EDTASM6309" assembler created by Robert Gault.
** The HD63B09EP Reference Guide by Chet Simpson and Alan Dekok mentions a
single mnemonic not used in CCASM, called "TFM" for doing memory block
operations. TFM R,R+ translates into exp r,r; TFM R+,R translates into imp r,r;
TFM R-,R- translates into copy- r,r; and TFM R+,R+ translates into copy r,r.

Comparing, Testing, And Clearing

clr{a,b,d,e,f,w} [clear register]
clr {memory,index} [clear byte at memory location]
tst{a,b,d,e,f,w} [test the target reg., setting reg. cc]
tst {memory} [test the target memory, setting reg. cc]
bit{a,b,d,md} {memory,value} [test target bits with bits of a reg.]
cmp{a,b,d,x,y,u,s,e,f,w} [compare a reg. with memory data]

11

Saving And Restoring Registers On The Stacks

pshs {register list} [push registers onto System stack}
puls {register list} [pull registers from System stack}
pshu {register list} [push registers onto User stack}
pulu {register list} [pull registers from User stack}
pshsw [push reg. w onto System Stack]
pulsw [pull reg. w register from System stack]
pshuw [push reg. w onto User stack]
puluw [pull reg. w from User stack]

Doing Arithmetic

abx [add reg. b to reg. x]
add{a,b,d,e,f,w} {memory,value} [add memory to reg.]
sub{a,b,d,e,f,w} {memory,value} [subtract target from reg.]
adc{a,b,d} {memory,value} [add memory plus carry to reg.]
sbc{a,b,d} {memory,value} [subtract target & carry from reg.]
daa [decimal-adjust contents of reg. a]
mul [multiply reg. a by reg. b, becoming reg. d]
muld {memory,value} [multiply d * operand, becoming d]
divd {memory,value} [divide register d by target, becoming d]
divq [divide register q by target]
inc{a,b,d,e,f,w} [increment (add 1) to reg.]
inc {memory} [increment memory]
dec{a,b,d,e,f,w} [decrement (subtract 1 from) reg.]
dec {memory} [decrement byte at memory location]
neg{a,b,d} [negate (2's complement) a reg.]
neg {memory} [negate the target]
sexw [sign-extend reg. w (bit 15) into reg. d]
sex [sign-extend reg. b (bit 7) into reg. a]
asr{a,b,d} [shift reg. bits to the right, retaining sign bit]
asr {memory} [shift memory bits to the right, retaining sign bit]
asl{a,b,d} [shift reg. bits to the left, filling LSBit with zero]
asl {memory} [shift memory bits to the left, filling LSBit with zero]

Moving Around Within Your Programs

jmp {memory} [jmp to a direct/indirect address]
jsr {memory} [jump to a direct/indirect subroutine]
rts [return from subroutine (jsr or bsr); same as puls pc]
rti [return from interrupt (CPU- or swi-generated interrupt]
nop [no operation, code that does nothing]

12

Doing Bit-Based Operations

com{a,b,d,e,f,w} [1's-compliment a CPU reg.]
com {memory} [1's-compliment a byte of memory]
and{a,b,cc,d} {memory,value} [logical AND of memory bits with a reg.]
or{a,b,cc,d} {memory,value} [OR the bits of the target byte into a reg.]
eor{a,b,d} {memory,value} [exclusive OR of target memory bits with reg.}
rol{a,b,d,w} [rotate reg. bits to the left, filling LSBit with Carry]
rol {memory} [rotate memory bits to the left, filling LSBit with Carry]
ror{a,b,d,w} [rotate reg. bits to the right, filling MSBit with Carry]
ror {memory} [rotate memory bits to the right, filling MSBit with Carry]
lsl{a,b,d} [logical shift reg. bits to the left, filling LSBit with zero]
lsl {memory} [logical shift memory bits to the left, filling LSBit with zero]
lsr{a,b,d,w} [logical shift reg. bits to the right, filling MSBit with zero]
lsr {memory} [logical shift memory bits to the right, filling MSBit with zero]
aim {value;memory} [AND the bits of the value with the bits of the memory byte]
eim {value;memory} [EOR/XOR the bits of the value with the bits of the memory
byte]
oim {value;memory} [OR the bits of the value with the bits of the memory byte]
tim {value;memory} [TEST the bits of the value with the bits of the memory
byte]

Operating Between Two Registers

exg {reg.,reg.} [exchange contents of two registers]
tfr {src. reg.,dest. reg.} [transfer src. reg. into dest. reg.]
lea{x,y,u,s} {offset,pointer} [load effective address]
adcr {source reg,destination reg} [add source reg. plus carry to destination reg.]
addr {source reg,destination reg} [add source reg. to destination reg.]
andr {source reg,destination reg} [AND of source reg. with the destination reg.]
cmpr {source reg,destination reg} [compare source reg. with destination reg.]
eorr {source reg,destination reg} [Exclusive OR of source reg. with destination
reg.]
orr {source reg,destination reg} [OR of source reg. with destination reg.]
sbcr {source reg,destination reg} [subtract source reg. and carry from dest. reg.]
subr {source reg,destination reg} [subtract source reg. from destination reg.]

Handling Interrupts

cwai {#byte} [clear and wait for interrupt]
swi{2,3} [software (manual) interrupt types 2 and 3]
swi [software interrupt type 1]
sync [synchronize to interrupt]

13

Unconditional Relative Branches (always performed)

bra {address} [branch]
lbra {address} [long branch]
brn {address} [branch never]
lbrn {address} [long branch never]
bsr {address} [branch to a subroutine]
lbsr {address} [long branch to a subroutine]

Conditional Relative Branches based on (reg. cc) flags

bhs {address} [branch if higher or same, C=0] unsigned
lbhs {address} [long branch if higher or same, C=0] unsigned
blo {address} [branch if lower, C=1] unsigned
lblo {address} [long branch if lower, C=1] unsigned
bhi {address} [branch if higher] unsigned
lbhi {address} [long branch if higher] unsigned
bls {address} [branch if less than or same] unsigned
lbls {address} [long branch if less than or same] unsigned
blt {address} [branch if less than, N XOR V=1] signed
lblt {address} [long branch if less than, N XOR V=1] signed
ble {address} [branch if less than or equal, Z=1 or N XOR V=1] signed
lble {address} [long branch if less than or equal] signed
bgt {address} [branch if greater than, N XOR V=0] signed
lbgt {address} [long branch if greater than, N XOR V=0] signed
bge {address} [branch if greater than or equal, Z=1 or N XOR V=0] signed
lbge {address} [long branch if greater than or equal to] signed

Branches based on a CPU Condition Code

bne {address} [branch if not equal] Z=0
lbne {address} [long branch if not equal] Z=0
beq {address} [branch if equal] Z=1
lbeq {address} [long branch if equal] Z=1
bcc {address} [branch if carry is clear] C=0
lbcc {address} [long branch if carry is clear] C=0
bcs {address} [branch if carry is set] C=1
lbcs {address} [long branch if carry is set] C=1
bmi {address} [branch if minus] N=1
lbmi {address} [long branch if minus] N=1
bpl {address} [branch if plus] N=0
lbpl {address} [long branch if plus] N=0
bvc {address} [branch if no overflow] V=0
lbvc {address} [long branch if no overflow] V=0
bvs {address} [branch if overflow] V=1
lbvs {address} [long branch if overflow] V=1

14

Operands

When a direct value is expected by an instruction

#%010101 [binary value]
#100 [decimal value]
#$7F [hexidecimal value]
#symbol_name [use symbol's equate]
#expression

When memory access is expected

%address [binary address]
$address [hexidecimal address]
symbol_name [use symbol's equate]
address [decimal address]
<address [LSB of address, reg. dp is the MSB]
>address [full 16-bit address]

When a string or character is expected

“a string”
/a string/
'c a character
'b' a character

15

Indexed memory

 ,{x,y,u,s,pc,w} (access memory pointed to by reg.)
 [,{x,y,u,s,pc,w}] (indirect access)
 {a,b,d,e,f,w},{x,y,u,s,pc,w}
 [address] (indirect address)
 offset,{x,y,u,s,pc,w} (use 5-bit offset from pointer if possible)
 <offset,{x,y,u,s,pc,w} (force 8-bit offset from pointer if possible)
 >offset,{x,y,u,s,pc,w} (force 16-bit offset from pointer if possible)

typical examples of indexed memory access:

 ,x offset,x ,x+ ,x++ ,-x ,--x
 a,x b,x d,x e,x f,x w,x
 ,y offset,y ,y+ ,y++ ,-y ,--y
 a,y b,y d,y e,y f,y w,y
 ,u offset,u ,u+ ,u++ ,-u ,--u
 a,u b,u d,u e,u f,u w,u
 ,s offset,s ,s+ ,s++ ,-s ,--s
 a,s b,s d,s e,s f,s w,s
 ,w offset,w ,w++ ,--w ,pc offset,pc
 [,x] [offset,x] [,x++] [,--x]
 [a,x] [b,x] [d,x] [e,x] [f,x] [w,x]
 [,y] [offset,y] [,y++] [,--y]
 [a,y] [b,y] [d,y] [e,y] [f,y] [w,y]
 [,u] [offset,u] [,u++] [,--u]
 [a,u] [b,u] [d,u] [e,u] [f,u] [w,u]
 [,s] [offset,s] [,s++] [,--s]
 [a,s] [b,s] [d,s] [e,s] [f,s] [w,s]
 [,w] [offset,w] [,w++] [,--w] [,pc] [offset,pc]

Indexed memory using 6309 AIM, TIM, EIM, OIM instructions

#100;5,x
#65;a,y

16

Expressions

Values, offsets, addresses, and any other type of parameter may be defined as
simple or complex mathematical expressions.

Operators

* [multiply]
/ [divide]
% [modulas]
+ [add] (also unary)
- [subtract] (also unary)
^ [1's compliment, logical NOT] (also unary)
& [logical AND]
! [logical OR]
| [logical OR]
~ [logical Exclusive OR]

Comparisons

The result of these operations will be of the Boolean type (either 0 for False or 1
for True). You compare mathematical expressions on either side of the operation,
and get a True or False result.

= [is equal to]
< [is less than]
> [is greater than]
< [is less than or equal to]
> [is greater than or equal to]
<> [is not equal to]

Order Of Operations

1) parenthesis (innermost (first))
2) unaries (like '-', '+', and '^')
2) multiplies and divides (*, /, %)
3) adds and subtracts (+, -)
4) logical operations (&, !, ~, ^)
5) comparisons (=, <, >, <>, <=, >=)

You can always use parenthesis to control the order or to enhance the clarity of an
expression.

17

Expression Examples

-64
+101
100+5
-symbol_5
$2000+$100
$3120-$ab
-255<=254
timercount>3600
symbol=anothersymbol
label<>anotherlabel
^255
label_c+^5
^symbol [return 1's compliment of "symbol"]
port!enableDAC [return both values OR'ed into one value]
sample&%11111100 [mask out the lower 2 bits of "sample"]
%11111%%1000 [1st binary value modulas the 2nd binary value)
50*4/2
1+2*(3+4)+5 ; notice the order of operations (1 + 2*7 + 5 = 20)
(1024+32)*15+31
(52-2)*2
+-5
-(+5)
-100/5*2 ; automatically orders as -(100/(5*2))
100+-100/10
apple+200/2 ; return ("apple" plus 100)
1*2+3*4+5*6
-254<=255
1000>-1000
-2000>2000
true&true ; returns true if both cases are true
true&false
false&true
false&false
true!true ; returns true if either case is true
true!false
false!true
false!false

See the file "test.asm" for many more examples of CCASM's powerful expression
evaluator.

18

Structures, Unions, and Namespaces

Structures

A CCASM structure is a segment of data or code separated into fields or offsets
from the structure beginning. By using the format "structurename.structurefield"
you can access any field of any structure. These fields translate into their own
offset from the beginning of the structure.

An example of a simple structure is:

color struct
red rmb 1
green rmb 1
blue rmb 1

ends

To access the "green" field, you would reference the symbol "color.green".

Database applications can rely heavily on structures. Using pointers to objects,
you can access records by name and field fairly easily in a large table or database.
Because each structure field is an offset, it can be used as the offset for indexed
memory instructions or anywhere else an offset is expected.

ldx #colors start of database memory
ldy #256 records in database

a@ lda color.green,x load "green" field of this record
ldb color.blue,x load "blue" field of this record
lde color.red,x load "red" field of this record
jsr plot
leax 3,x point to next record (skip structure size)
leay -1,y
bne a@

To automatically compute the size of a structure, use the following compile-time
symbol:

example:
ldy #sizeof{color}
ldx #sizeof{transaction}

To declare a structure that inherits the fields of another structure, and possibly
appends new fields to the new structure, the following syntax is used:

apple struct fruit
diameter rmb 1

ends

19

To generate data in the code stream (like FCB, FDB, FCC, etc. does) based on a
structure, use the syntax:

label apple

The label is required, and the mnemonic (psuedo-op) is whatever the structure
name is. The above example generates initialized data the size of the source
structure (apple).

Note that label inherits all of apple's structure fields. You can now directly access
this data area using direct and exctended addressing.

start lda label.diameter actual address of field

20

Unions

A union structure allows overlapping objects or data fields. The program counter
does not advance as usual inside of a union structure for each object. The total
size of a union is the size of the largest object in the union. Ending a union causes
the program counter to advance by the size of the union (the largest object inside).

variant union
byte rmb 1
word rmb 2

endu

To automatically compute the size of a union, use the following compile-time
symbol:

example:
ldy #sizeof{variant}

It's beyond the scope of this document to go into detail about all of the uses for
union structures, but several uses will be mentioned briefly.

1)allows variable name aliasing
2)allows the reuse of variable memory by placing all union symbols at the same PC

address
3)allows different data types to exist at the same location

A named union inside of a parent structure will cause all of its fields to take on the
form parent_structure.union_name.union_field. You may optionally wish to use
another method for accessing the union.

CCASM also supports anonymous unions. Anonymous (unnamed) unions must be
declared within a structure. Because the union resides inside of a named
structure, no name for the union is required. The resulting dot notation name for
the union fields will be parent_structure.union_field.

Namespaces

Using the namespace directive, a constant prefix label will be assigned to all
subsequent labels; thus, allowing composite labels to be formed. This feature
might come in handy more when you are attempting to merge or include foreign
source code into your programs.

foo namespace
start rts

endname close namespace

jmp foo.start

21

Procedures

Introduction to CCASM Procedures

Procedures in assembly language? Ofcourse! You can create procedures that use
formal parameters, then call your procedures along with the required parameters.
Code generation and stack management is handled automatically.

Procedures are declared using the proc/begin/endproc directives. The proc
directive is required to name the procedure and list the required parameters and
their types. Procedures are ended using the endproc directive.

Declaring Procedures

fillmem proc top:word,length:word,filler:byte
begin fillmem
ldx top,u get parameter
ldy length,u get parameter
lda filler,u get parameter

a@ sta ,x+
leay -1,y
bne a@
endproc

The first required field is the procedure name ('fillmen' in this example). The
second field (always called proc) is also required. The third field is optional and
lists any parameters required by the procedure. Procedures do not have to have
parameters. Then why use a procedure instead of the jsr instruction? Procedures
can reserve local named variables on the stack automatically. This helps isolate
your procedures or subroutines from the rest of the program.

The begin directive marks the entry point into your procedure. This allows static
and local memory to be reserved between the proc and begin directives. Static
memory will be placed at the current program counter inside of the procedure
while local memory gets allocated on the stack at run-time. The code for this is
generated automatically by the assembler.

You define formal parameters by listing any number of symbol names along with
their types (such as byte, word, dword, int8, int16, etc.). The format is
symbol:type,symbol:type,... for as many parameters as you need.

Note: No spaces are allowed in a procedures's parameter list.

The following parameter list defines 5 bytes used by the procedure, composed of
two 16-bit values and one 8-bit value.

top:word,length:word,filler:byte

22

Calling Procedures

After defining a procedure, it's ready to call using the call function. When you call
a procedure, you must pass the same number of parameters into the procedure
that are defined in the formal parameter list. However, the names or values you
pass in are separate (outside) objects. This information is copied into the formal
parameter names used only by the procedure.

Here's an example of how we would call the fillmem procedure:

org 3584

start call fillmem,1024,512,128
rts

end start

Here's what happens when the call function is invoked:

First, the supplied actual parameters (1024, 512, 128) are pushed onto the S stack
starting from the last parameter (128) and ending with the first parameter (1024).
The above example pushes the following parameters onto the S stack in the order
of byte, word, word. The parameters are pushed onto the S stack automatically
(at run-time) using code generated by the assembler (at compile-time).

The parameter values that are pushed onto the S stack occupy the same number
of bytes as the formal parameter's type states. If you try to pass in a 16-bit value
for an 8-bit formal parameter, only the LSB of the parameter will be passed to the
procedure.

23

Inside of Procedures

So, what goes on inside of a procedure? The quick answer is: anything you like!
The other answer explains what is generated by the assembler to make the
procedure do what it is supposed to do.

First there is a small bit of automatic code that finishes creating the procedure's
activation record (stack frame).

The previous activation record pointer (,U) is pushed to the S stack, then the
current value of the S stack is copied to the U register so that parameters and local
memory can be accessed as offsets from ,U. This is the base address of the
procedure's activation record. Parameters are accessed from positive sides of ,U
while local memory is accessed from negative sides of ,U. As long as we preserve
the U register during the procedure, everything is ok. However, if there's no
parameters or local variables, you can use U for whatever you like.

Now the S stack is moved down in memory one byte for each byte of local memory
required by the procedure. This stack adjustment is done using one instruction
which subtracts the total local memory requirement from the value of the S stack.

Inside of a procedure, the current location of the S stack base is not that
important. In other words, since ,U now points to the activation record which also
holds information used to restore the S stack to where it was before the procedure
call, you can use S to play around with some. However, be careful not to destroy
anything on the plus side of the stack since there's likely to be an activation record
(or more) sitting there at any given time.

At this time, there is currently no “display”. All labels and symbols are local to the
procedure, meaning you can't access any symbols that were defined outside of the
procedure.

24

Accessing Procedure Parameters

You can access the parameters that the call function passed in by using the
following syntax:

lda parameter1,u normal
ldd parameter2,u normal
ldx [parameter3,u] indirect (pass-by-reference support)
lda parameter1+1,u offset of parameter + 1

Simple enough, all procedure parameters are accessed as offsets from the U
register. That is, the parameter values are pushed onto the S stack before the
procedure is called, then the U register is pointed to this base pointer of the S
stack.

The assembler automatically computes parameter offsets, so you don't have to
really worry too much about where your data is on the stack. Just use the formal
parameter name (defined in the procedure declaration) and append the “,U”
indexed register.

You can also place static data (RMBs, FCB's, FCC's, etc.) inside of your procedures.

Local Variables

You can reserve local variables inside of a procedure by using the var directive,
like so:

fillmem proc start:word,length:word,filler:byte
aa var 1 reserve 1 byte of local memory
bb var 2 reserve 2 bytes of local memory

begin fillmem
...
lda aa,u access local mem
ldd bb,u access local mem
endproc

You access local variables the same way you access procedure parameters, using
the ,U indexing mode. Local memory is accessed on the negative side of ,U while
parameters are accessed on the positive side of ,U. For example:

lda local,u translates to lda -offset,u
lda param,u translates to lda offset,u

The offsets for both parameters and local variables are automatically computed at
compile-time. These offsets into the procedure's activation record will be explained
next.

25

Procedure Activation Records

Every procedure has an activation record that is created at run-time and stored on
the S stack. The code for creating the activation record is generated by the
assembler automatically, based on a procedure's optional parameters and local
variables, etc.

A procedure with both parameters and local variables will have an activation record
similar to the one below. Note that {address} is given as an example of where the
S stack was originally at (32768) before the procedure call.

Local Variable 2 (MSB) {32759} +0,s -3,u

Local Variable 2 (LSB) {32760} +1,s -2,u

Local Variable 1 (byte) {32761} +2,s -1,u

Register U MSB {32762} +3,s <-- Record Base (,u)

Register U LSB {32763} +4,s 1,u

Program Counter MSB {32764} +5,s 2,u

Program Counter LSB {32765} +6,s 3,u

Parameter2 (LEVEL) {32766} +7,s 4,u

Parameter1 (COLOR) {32767} +8,s 5,u

A procedure having parameters but no local variables will have an activation record
similar to the one below.

Register U MSB {32762} +0,s <-- Record Base (,u)

Register U LSB {32763} +1,s 1,u

Program Counter MSB {32764} +2,s 2,u

Program Counter LSB {32765} +3,s 3,u

Parameter2 (LEVEL) {32766} +4,s 4,u

Parameter1 (COLOR) {32767} +5,s 5,u

A procedure having no parameters and no local variables will have an activation
record similar to the one below. Note that this is basically a pointless activation
record unless you plan to do some manual allocation of local memory, etc. by
adjusting the S stack yourself from within the procedure.

Register U MSB {32762} +0,s <-- Record Base (,u)

Register U LSB {32763} +1,s 1,u

Program Counter MSB {32764} +2,s 2,u

Program Counter LSB {32765} +3,s 3,u

26

Instruction Examples

6809 Examples

orcc #80 [disable IRQ and FIRQ interrupts]
andcc #175 [enable IRQ and FIRQ interrupts]
orcc #%00000001 [manually set the Carry conditon code]
andcc #%11111110 [manually clear the Carry condition code]
pshs x,d [push reg. x, reg. b, and reg. a onto S stack]
puls d,x,pc [pull regs. from stack then simulate an rts]
leay -1,y [subtract 1 from reg. y]
leau 2,x [load reg.x + 2 into reg.u]
leax d,x [reg. x = reg. x + reg. d]
leax table,pc [load relative address of "table" into reg. x]
here equ * ['*' translates into the address where "here" is or will be]
fdb 1024,. ['.' translates into the address of the 2nd operand value]
fcc "this is a basic ASCII string"
fcn "this string automatically gets a NULL added to it!"
fcs "this is a bit7-terminated ASCII string"
fcr "this string automatically gets a CR+NULL added to it"
fcb 1,2,3,4,5 [store 5 8-bit values]
fdb 10,20,30 [store 3 16-bit values]
fqb 5,10,15,20 [store 4 32-bit values]
rmb 200 [reserve/void 200 bytes of memory, for use at run-time]
lda ,x [get data at address pointed to by reg. x]
lda [,x] [get data at address pointed to by address in reg. x]
lda -5,u [get data at 5 bytes above address in reg. u]
adca #0 [add Carry result (0 or 1) into reg. a]
adcb #10 [add Carry result plus 10 into reg. b]
asrb [divide the signed contents of reg. b by 2]
lsrb [divide the unsigned contents of reg. a by 2]
rora [done consecutively, 9-bit right rotation is possible]
rola [9-bit left rotation through the Carry condition code]

27

6309-Only Examples

ldmd #1 [enable full 6309 CPU operation mode]
sexw [converts signed reg. w into signed reg. q]
oim 64;1024 [OR the value 64 into address 1024]
oim 128;,u [OR the value 128 into the memory pointed to by reg. u]
aim 254;2,u [AND the value 254 into offsetted mem. pointed to by reg. u]
aim 191;1024 [AND the value 191 into address 1024]
tim $80;65280 [TEST bit #7 of address 65280]
tim %11;[1000] [TEST bits #0&1 of indirect address 1000]
eim 85;255 [XOR the value 85 into address 255]
bor a,1,7,255 [OR bit #1 in reg. a with bit #7 from address 255]
ldbt a,2,6,200 [load bit #2 in reg. a with bit #6 from address 200]
ldq #98765 [load reg. q with a 32-bit integer]
ldq #$A4B2C3D9 [load reg. q with a 32-bit hex. value]
ldq #%10110010110000111010100011101011 [32-bit binary value]

28

Sample Program

This program prints a message to your Color BASIC screen:

org 16384 run at this address
start leax msg,pcr point to our message
! lda ,x+ get ASCII byte in msg

beq done stop at null byte
jsr [40962] print using BASIC ROM's STDOUT
bra < loop back to "!"

done rts return to BASIC
msg fcn "HELLO WORLD"

end start set BASIC "EXEC" address

This program echos your keystrokes to the Color BASIC screen
 (hit <BREAK> to exit):

org 16384 run at this address
getkey jsr [40960] get key from BASIC ROM's STDIN

tsta is it a NULL character?
beq getkey yes, ignore it
cmpa #3 is it the BREAK key?
beq done2 yes, so exit
jsr [40962] no, so print the char to STDOUT
bra getkey keep checking keys

done2 rts return to BASIC
end getkey set BASIC "EXEC" address

This program clears the Color BASIC screen:

org 16384 run at this address
filler equ $6060 "filler = $6060"
cls ldx #1024 point to top of screen

ldy #512 set # of bytes to clear
ldd #filler use 2 bytes of $60

! std ,x++ clear the 2 characters
leay -2,y subtract them from count
bne < count not 0, so repeat
rts return to BASIC
end cls

29

This example combines the above routines into one program:

org 16384 run at this address
start ldx #1024 point to top of screen

ldy #512 set # of bytes to clear
ldd #$6060 use 2 blank characters

! std ,x++ clear the 2 characters
leay -2,y subtract them from count
bne < go back to "!" until count=0
leax msg,pcr point to our message

! lda ,x+ get ASCII byte in msg
beq getkey stop at null byte
jsr [40962] print using BASIC ROM
bra < loop back to "!"

getkey jsr [40960] get keystroke using BASIC ROM
tsta is it a NULL character?
beq getkey yes, ignore it
cmpa #3 is it the BREAK key?
beq done yes, so exit
jsr [40962] no, so print the character
bra getkey keep checking keys

done rts return to BASIC
msg fcr "HELLO WORLD OF ASSEMBLY"

end start

30

File Formats

Multi-record files:

1) are created automatically based on the structure of your source code
2) can be LOADMed by Disk BASIC or similar loaders
3) have a beginning ORG record defining where the code should loading into RAM
4) have subsequent ORG records causing the loader to jump somewhere else
5) have an END record signifying there are no more records

This type of file can contain sub origins and any mix of voided memory, etc. An
example of a multi-record file would be one that has the ability to load 3 different
programs into 3 different locations of RAM, all done by the loader based on
information found in the embedded records. Another example would be a program
that automatically executes after being loaded, by embedding a small segment of
code that overwrites a system area of Disk BASIC.

Single-record files:

1) are created automatically based on the structure of your source code
2) can be LOADMed by Disk BASIC or similar loaders
3) have a beginning LOAD record defining where the code should loading into RAM
4) have an END record signifying there are no more records

An example of a single-record binary file would be a file created by BASIC after
typing SAVEM "SCREEN",1024,1535,0. The resulting file would 522 bytes long
because a 5-byte LOAD record begins, then 512 bytes of screen data, then a 5-
byte END record.

You can also force a single-record file output (-sr option) which has an additional
effect of translating any RMB statements in your source into initialized data (rather
than voided memory).

Because of the translation of voided memory areas into initialized data, a
continuous stream of code is generated from the first ORG statement to the END
statement of your source code. No other embedded ORG statements should be
used in your source code that will be assembled in single-record format.

31

No-records files:

1) must be force-assembled using the -nr option
2) are similar to ROM images
3) have no beginning or subsequent ORG records
4) have no END record

This type of file can be viewed as a variable-sized ROM image where the file
consists of only program opcode or data and no loader control structures. Such
ROM-like files must be structured correctly before assembly. Multiple ORG
statements are allowed in the source code, but should be used very carefully. No
opcode or initialized data should be placed after any RMB statement in a program
to be assembled in no-records format. In other words, voided memory is not
assembled, because a record is not generated to tell the loader to advance past or
load around any voided memory.

Multiple ORG statments followed by sets of RMBs are generally used for
enumerating variable addresses, etc. Large buffers and uninitialized tables and
can also be reserved this way so long as no opcode or data appears after any RMB
statements. Doing so would cause those stray opcodes to be loaded into
unintended locations in RAM.

32

6809 Opcode Summary
--
|Mnemon.|Op|IHNZVC|IEXD#R|~|Description |Notes |
|-------+--+------+------+-+----------------------+------------|
ABX	3A	------	X	3	Add to Index Register	X=X+B
ADCa s	B9	-*****	XXXXX	5	Add with Carry	a=a+s+C
ADDa s	BB	-*****	XXXXX	5	Add	a=a+s
ADDD s	F3	-*****	XXX*X	7	Add to Double acc.	D=D+s
ANDa s	B4	--**0-	XXXXX	5	Logical AND	a=a&s
ANDCC s	1C	?????1	X	3	Logical AND with CCR	CC=CC&s
ASL d	78	--****	XXX X	7	Arithmetic Shift Left	d=d*2
ASLa	48	--****	X	2	Arithmetic Shift Left	a=a*2
ASR d	77	--****	XXX X	7	Arithmetic Shift Right	d=d/2
ASRa	47	--****	X	2	Arithmetic Shift Right	a=a/2
BCC m	24	------	x	3	Branch if Carry Clear	If C=0
BCS m	25	------	x	3	Branch if Carry Set	If C=1
BEQ m	27	------	x	3	Branch if Equal	If Z=1
BGE m	2C	------	x	3	Branch if Great/Equal	If NxV=0
BGT m	2E	------	x	3	Branch if Greater Than	If Zv{NxV}=0
BHI m	22	------	x	3	Branch if Higher	If CvZ=0
BHS m	24	------	x	3	Branch if Higher/Same	If C=0
BITa s	B5	--**0-	XXXXX	5	Bit Test accumulator	a&s
BLE m	2F	------	x	3	Branch if Less/Equal	If Zv{NxV}=1
BLO m	25	------	x	3	Branch if Lower	If C=1
BLS m	23	------	x	3	Branch if Lower/Same	If CvZ=1
BLT m	2D	------	x	3	Branch if Less Than	If NxV=1
BMI m	2B	------	x	3	Branch if Minus	If N=1
BNE m	26	------	x	3	Branch if Not Equal	If Z=0
BPL m	2A	------	x	3	Branch if Plus	If N=0
BRA m	20	------	x	3	Branch Always	PC=m
BRN m	21	------	x	3	Branch Never	NOP
BSR m	8D	------	x	7	Branch to Subroutine	-[S]=PC,BRA
BVC m	28	------	x	3	Branch if Overflow Clr	If V=0
BVS m	29	------	x	3	Branch if Overflow Set	If V=1
CLR d	7F	--0100	XXX X	7	Clear	d=0
CLRa	4F	--0100	X	2	Clear accumulator	a=0
CMPa s	B1	--****	XXXXX	5	Compare	a-s
CMPD s	B3	--****	XXX*X	8	Compare Double acc.	D-s (10H)
CMPS s	BC	--****	XXX*X	8	Compare Stack pointer	S-s (11H)
CMPU s	B3	--****	XXX*X	8	Compare User stack ptr	U-s (11H)
CMPi s	BC	--****	XXX*X	7	Compare	i-s (Y ~s=8)
COM d	73	--**01	XXX X	2	Complement	d=~d
COMa	43	--**01	X	7	Complement accumulator	a=~a
CWAI n	3C	E?????	X	K	AND CCR, Wait for int.	CC=CC&n,E=1,
DAA	19	--****	X	2	Decimal Adjust Acc.	A=BCD format
DEC d	7A	--***-	XXX X	7	Decrement	d=d-1
DECa	4A	--***-	X	2	Decrement accumulator	a=a-1
EORa s	B8	--**0-	XXXXX	5	Logical Exclusive OR	a=axs
EXG r,r	1E	------	X	8	Exchange (r1 size=r2)	r1<->r2
INC d	7C	--***-	XXX X	7	Increment	d=d+1
INCa	4C	--***-	X	2	Increment accumulator	a=a+1
JMP s	7E	------	XXX X	4	Jump	PC=EAs
--

33

6809 Opcode Summary (cont.)

--
|Mnemon.|Op|IHNZVC|IEXD#R|~|Description |Notes |
|-------+--+------+------+-+----------------------+------------|
JSR s	BD	------	XXX X	8	Jump to Subroutine	-[S]=PC,JMP
LBcc nn	10	------	x	5	Long cond. Branch(~=6)	If cc LBRA
LBRA nn	16	------	x	5	Long Branch Always	PC=nn
LBSR nn	17	------	x	9	Long Branch Subroutine	-[S]=PC,LBRA
LDa s	B6	--**0-	XXXXX	5	Load accumulator	a=s
LDD s	FC	--**0-	XXX*X	6	Load Double acc.	D=s
LDS s	FE	--**0-	XXX*X	7	Load Stack pointer	S=s (10H)
LDU s	FE	--**0-	XXX*X	6	Load User stack ptr	U=s
LDi s	BE	--**0-	XXX*X	6	Load index register	i=s (Y ~s=7)
LEAp s	3X	---i--	xX X	4	Load Effective Address	p=EAs(X=0-3)
LSL d	78	--0***	XXX X	7	Logical Shift Left	d={C,d,0}<-
LSLa	48	--0***	X	2	Logical Shift Left	a={C,a,0}<-
LSR d	74	--0***	XXX X	7	Logical Shift Right	d=->{C,d,0}
LSRa	44	--0***	X	2	Logical Shift Right	d=->{C,d,0}
MUL	3D	---*-*	X	B	Multiply	D=A*B
NEG d	70	-?****	XXX X	7	Negate	d=-d
NEGa	40	-?****	X	2	Negate accumulator	a=-a
NOP	12	------	X	2	No Operation	
ORa s	BA	--**0-	XXXXX	5	Logical inclusive OR	a=avs
ORCC n	1A	??????	X	3	Inclusive OR CCR	CC=CCvn
PSHS r	34	------	X	2	Push reg(s) (not S)	-[S]={r,...}
PSHU r	36	------	X	2	Push reg(s) (not U)	-[U]={r,...}
PULS r	35	??????	X	2	Pull reg(s) (not S)	{r,...}=[S]+
PULU r	37	??????	X	2	Pull reg(s) (not U)	{r,...}=[U]+
ROL d	79	--****	XXX X	7	Rotate Left	d={C,d}<-
ROLa	49	--****	X	2	Rotate Left acc.	a={C,a}<-
ROR d	76	--****	XXX X	7	Rotate Right	d=->{C,d}
RORa	46	--****	X	2	Rotate Right acc.	a=->{C,a}
RTI	3B	-*****	X	6	Return from Interrupt	{regs}=[S]+
RTS	39	------	X	5	Return from Subroutine	PC=[S]+
SBCa s	B2	--****	XXXXX	5	Subtract with Carry	a=a-s-C
SEX	1D	--**--	X	2	Sign Extend	D=B
STa d	B7	--**0-	XXX X	5	Store accumultor	d=a
STD d	FD	--**0-	XXX X	6	Store Double acc.	D=a
STS d	FF	--**0-	XXX X	7	Store Stack pointer	S=a (10H)
STU d	FF	--**0-	XXX X	6	Store User stack ptr	U=a
STi d	BF	--**0-	XXX X	6	Store index register	i=a (Y ~s=7)
SUBa s	B0	--****	XXXXX	5	Subtract	a=a-s
SUBD s	B3	--****	XXX*X	7	Subtract Double acc.	D=D-s
SWI	3F	1-----	X	J	Software Interrupt 1	-[S]={regs}
SWI2	3F	E-----	X	K	Software Interrupt 2	SWI (10H)
SWI3	3F	E-----	X	K	Software Interrupt 3	SWI (11H)
SYNC	13	------	X	2	Sync. to interrupt	(min ~s=2)
TFR r,r	1F	------	X	6	Transfer (r1 size<=r2)	r2=r1
TST s	7D	--**0-	XXX X	7	Test	s
TSTa	4D	--**0-	X	2	Test accumulator	a
--

34

6809 Opcode Summary (cont.)

--
CCR	-*01?			Unaffect/affected/reset/set/unknown
E	E			Entire flag (Bit 7, if set RTI~s=F)
F I	I			FIRQ/IRQ interrupt mask (Bit 6/4)
H	H			Half carry (Bit 5)
N	N			Negative (Bit 3)
Z	Z			Zero (Bit 2)
V	V			Overflow (Bit 1)
C	C			Carry/borrow (Bit 0)
-----------------+------+-------------------------------------				
a	I		Inherent (a=A,Op=4XH, a=B,Op=5XH)	
nn,E	E		Extended (Op=E, ~s=e)	
[nn]	x		Extended indirect	
xx,p!	X		Indexed (Op=E-10H, ~s=e-1)	
[xx,p!]	X		Indexed indirect (p!=p++,--p only)	
n,D	D		Direct (Op=E-20H, ~s=e-1)	
#n	#		Immediate (8-bit, Op=E-30H, ~s=e-3)	
#nn	*		Immediate (16-bit)	
m	x		Relative (PC=PC+2+offset)	
[m]	R		Relative indirect (ditto)	
--------------------------+-----------------------------------				
DIRECT	Direct addressing mode			
EXTEND	Extended addressing mode			
FCB n	Form Constant Byte			
FCC 'string'	Form Constant Characters			
FDB nn	Form Double Byte			
RMB nn	Reserve Memory Bytes			
--------------------------+-----------------------------------				
A B	Accumulators (8-bit)			
CC	Condition Code register (8-bit)			
D	A and B (16-bit, A high, B low)			
DP	Direct Page register (8-bit)			
PC	Program Counter (16-bit)			
S U	System/User stack pointer(16-bit)			
X Y	Index registers (16-bit)			
--------------------------+-----------------------------------				
a	Acc A or B (a=A,Op=BXH, a=B,Op=FXH)			
d s EA	Destination/source/effective addr.			
i p r	Regs X,Y/regs X,Y,S,U/any register			
m	Relative address (-126 to +129)			
n nn	8/16-bit expression(0 to 255/65535)			
xx p!	A,B,D,nn/p+,-p,p++,--p (indexed)			
+ - * /	Add/subtract/multiply/divide			
& ~ v x	AND/NOT/inclusive OR/exclusive OR			
<- -> <->	Rotate left/rotate right/exchange			
[] []+ -[]	Indirect address/increment/decr.			
{ }	Combination of operands			
{regs}	If E {PC,U/S,Y,X,DP,B,A,CC}/{PC,CC}			
(10H) (11H)	Hex opcode to precede main opcode			
--

35

Hexidecimal, Binary, and Decimal Conversions

Use this chart to translate values between the different number types accepted by
CCASM. You can use any number base system you prefer when writing software --
hexidecimal (base 16), binary (base 2), or decimal (base 10).

Hex Bin Dec Neg ASCII

$00 = %00000000 = 0
$01 = %00000001 = 1 = -255
$02 = %00000010 = 2 = -254
$03 = %00000011 = 3 = -253
$04 = %00000100 = 4 = -252
$05 = %00000101 = 5 = -251
$06 = %00000110 = 6 = -250
$07 = %00000111 = 7 = -249 = Bell
$08 = %00001000 = 8 = -248 = Backspace
$09 = %00001001 = 9 = -247 = TAB
$0A = %00001010 = 10 = -246 = Line Feed
$0B = %00001011 = 11 = -245
$0C = %00001100 = 12 = -244 = Form Feed/Clear
$0D = %00001101 = 13 = -243 = Carriage Return
$0E = %00001110 = 14 = -242
$0F = %00001111 = 15 = -241
$10 = %00010000 = 16 = -240
$11 = %00010001 = 17 = -239
$12 = %00010010 = 18 = -238
$13 = %00010011 = 19 = -237
$14 = %00010100 = 20 = -236
$15 = %00010101 = 21 = -235
$16 = %00010110 = 22 = -234
$17 = %00010111 = 23 = -233
$18 = %00011000 = 24 = -232
$19 = %00011001 = 25 = -231
$1A = %00011010 = 26 = -230
$1B = %00011011 = 27 = -229
$1C = %00011100 = 28 = -228
$1D = %00011101 = 29 = -227
$1E = %00011110 = 30 = -226
$1F = %00011111 = 31 = -225
$20 = %00100000 = 32 = -224 = '
$21 = %00100001 = 33 = -223 = '!
$22 = %00100010 = 34 = -222 = '"
$23 = %00100011 = 35 = -221 = '#
$24 = %00100100 = 36 = -220 = '$

36

$25 = %00100101 = 37 = -219 = '%
$26 = %00100110 = 38 = -218 = '&
$27 = %00100111 = 39 = -217 = ''
$28 = %00101000 = 40 = -216 = '(
$29 = %00101001 = 41 = -215 = ')
$2A = %00101010 = 42 = -214 = '*
$2B = %00101011 = 43 = -213 = '+
$2C = %00101100 = 44 = -212 = ',
$2D = %00101101 = 45 = -211 = '-
$2E = %00101110 = 46 = -210 = '.
$2F = %00101111 = 47 = -209 = '/
$30 = %00110000 = 48 = -208 = '0
$31 = %00110001 = 49 = -207 = '1
$32 = %00110010 = 50 = -206 = '2
$33 = %00110011 = 51 = -205 = '3
$34 = %00110100 = 52 = -204 = '4
$35 = %00110101 = 53 = -203 = '5
$36 = %00110110 = 54 = -202 = '6
$37 = %00110111 = 55 = -201 = '7
$38 = %00111000 = 56 = -200 = '8
$39 = %00111001 = 57 = -199 = '9
$3A = %00111010 = 58 = -198 = ':
$3B = %00111011 = 59 = -197 = ';
$3C = %00111100 = 60 = -196 = '<
$3D = %00111101 = 61 = -195 = '=
$3E = %00111110 = 62 = -194 = '>
$3F = %00111111 = 63 = -193 = '?
$40 = %01000000 = 64 = -192 = '@
$41 = %01000001 = 65 = -191 = 'A
$42 = %01000010 = 66 = -190 = 'B
$43 = %01000011 = 67 = -189 = 'C
$44 = %01000100 = 68 = -188 = 'D
$45 = %01000101 = 69 = -187 = 'E
$46 = %01000110 = 70 = -186 = 'F
$47 = %01000111 = 71 = -185 = 'G
$48 = %01001000 = 72 = -184 = 'H
$49 = %01001001 = 73 = -183 = 'I
$4A = %01001010 = 74 = -182 = 'J
$4B = %01001011 = 75 = -181 = 'K
$4C = %01001100 = 76 = -180 = 'L
$4D = %01001101 = 77 = -179 = 'M
$4E = %01001110 = 78 = -178 = 'N
$4F = %01001111 = 79 = -177 = 'O
$50 = %01010000 = 80 = -176 = 'P
$51 = %01010001 = 81 = -175 = 'Q

37

$52 = %01010010 = 82 = -174 = 'R
$53 = %01010011 = 83 = -173 = 'S
$54 = %01010100 = 84 = -172 = 'T
$55 = %01010101 = 85 = -171 = 'U
$56 = %01010110 = 86 = -170 = 'V
$57 = %01010111 = 87 = -169 = 'W
$58 = %01011000 = 88 = -168 = 'X
$59 = %01011001 = 89 = -167 = 'Y
$5A = %01011010 = 90 = -166 = 'Z
$5B = %01011011 = 91 = -165 = '[
$5C = %01011100 = 92 = -164 = '\
$5D = %01011101 = 93 = -163 = ']
$5E = %01011110 = 94 = -162 = '^
$5F = %01011111 = 95 = -161 = '_
$60 = %01100000 = 96 = -160 = '`
$61 = %01100001 = 97 = -159 = 'a
$62 = %01100010 = 98 = -158 = 'b
$63 = %01100011 = 99 = -157 = 'c
$64 = %01100100 = 100 = -156 = 'd
$65 = %01100101 = 101 = -155 = 'e
$66 = %01100110 = 102 = -154 = 'f
$67 = %01100111 = 103 = -153 = 'g
$68 = %01101000 = 104 = -152 = 'h
$69 = %01101001 = 105 = -151 = 'i
$6A = %01101010 = 106 = -150 = 'j
$6B = %01101011 = 107 = -149 = 'k
$6C = %01101100 = 108 = -148 = 'l
$6D = %01101101 = 109 = -147 = 'm
$6E = %01101110 = 110 = -146 = 'm
$6F = %01101111 = 111 = -145 = 'o
$70 = %01110000 = 112 = -144 = 'p
$71 = %01110001 = 113 = -143 = 'q
$72 = %01110010 = 114 = -142 = 'r
$73 = %01110011 = 115 = -141 = 's
$74 = %01110100 = 116 = -140 = 't
$75 = %01110101 = 117 = -139 = 'u
$76 = %01110110 = 118 = -138 = 'v
$77 = %01110111 = 119 = -137 = 'w
$78 = %01111000 = 120 = -136 = 'x
$79 = %01111001 = 121 = -135 = 'y
$7A = %01111010 = 122 = -134 = 'z
$7B = %01111011 = 123 = -133 = '{
$7C = %01111100 = 124 = -132 = '|
$7D = %01111101 = 125 = -131 = '}
$7E = %01111110 = 126 = -130 = '~

38

$7F = %01111111 = 127 = -129
$80 = %10000000 = 128 = -128
$81 = %10000001 = 129 = -127
$82 = %10000010 = 130 = -126
$83 = %10000011 = 131 = -125
$84 = %10000100 = 132 = -124
$85 = %10000101 = 133 = -123
$86 = %10000110 = 134 = -122
$87 = %10000111 = 135 = -121
$88 = %10001000 = 136 = -120
$89 = %10001001 = 137 = -119
$8A = %10001010 = 138 = -118
$8B = %10001011 = 139 = -117
$8C = %10001100 = 140 = -116
$8D = %10001101 = 141 = -115
$8E = %10001110 = 142 = -114
$8F = %10001111 = 143 = -113
$90 = %10010000 = 144 = -112
$91 = %10010001 = 145 = -111
$92 = %10010010 = 146 = -110
$93 = %10010011 = 147 = -109
$94 = %10010100 = 148 = -108
$95 = %10010101 = 149 = -107
$96 = %10010110 = 150 = -106
$97 = %10010111 = 151 = -105
$98 = %10011000 = 152 = -104
$99 = %10011001 = 153 = -103
$9A = %10011010 = 154 = -102
$9B = %10011011 = 155 = -101
$9C = %10011100 = 156 = -100
$9D = %10011101 = 157 = -99
$9E = %10011110 = 158 = -98
$9F = %10011111 = 159 = -97
$A0 = %10100000 = 160 = -96
$A1 = %10100001 = 161 = -95
$A2 = %10100010 = 162 = -94
$A3 = %10100011 = 163 = -93
$A4 = %10100100 = 164 = -92
$A5 = %10100101 = 165 = -91
$A6 = %10100110 = 166 = -90
$A7 = %10100111 = 167 = -89
$A8 = %10101000 = 168 = -88
$A9 = %10101001 = 169 = -87
$AA = %10101010 = 170 = -86
$AB = %10101011 = 171 = -85

39

$AC = %10101100 = 172 = -84
$AD = %10101101 = 173 = -83
$AE = %10101110 = 174 = -82
$AF = %10101111 = 175 = -81
$B0 = %10110000 = 176 = -80
$B1 = %10110001 = 177 = -79
$B2 = %10110010 = 178 = -78
$B3 = %10110011 = 179 = -77
$B4 = %10110100 = 180 = -76
$B5 = %10110101 = 181 = -75
$B6 = %10110110 = 182 = -74
$B7 = %10110111 = 183 = -73
$B8 = %10111000 = 184 = -72
$B9 = %10111001 = 185 = -71
$BA = %10111010 = 186 = -70
$BB = %10111011 = 187 = -69
$BC = %10111100 = 188 = -68
$BD = %10111101 = 189 = -67
$BE = %10111110 = 190 = -66
$BF = %10111111 = 191 = -65
$C0 = %11000000 = 192 = -64
$C1 = %11000001 = 193 = -63
$C2 = %11000010 = 194 = -62
$C3 = %11000011 = 195 = -61
$C4 = %11000100 = 196 = -60
$C5 = %11000101 = 197 = -59
$C6 = %11000110 = 198 = -58
$C7 = %11000111 = 199 = -57
$C8 = %11001000 = 200 = -56
$C9 = %11001001 = 201 = -55
$CA = %11001010 = 202 = -54
$CB = %11001011 = 203 = -53
$CC = %11001100 = 204 = -52
$CD = %11001101 = 205 = -51
$CE = %11001110 = 206 = -50
$CF = %11001111 = 207 = -49
$D0 = %11010000 = 208 = -48
$D1 = %11010001 = 209 = -47
$D2 = %11010010 = 210 = -46
$D3 = %11010011 = 211 = -45
$D4 = %11010100 = 212 = -44
$D5 = %11010101 = 213 = -43
$D6 = %11010110 = 214 = -42
$D7 = %11010111 = 215 = -41
$D8 = %11011000 = 216 = -40

40

$D9 = %11011001 = 217 = -39
$DA = %11011010 = 218 = -38
$DB = %11011011 = 219 = -37
$DC = %11011100 = 220 = -36
$DD = %11011101 = 221 = -35
$DE = %11011110 = 222 = -34
$DF = %11011111 = 223 = -33
$E0 = %11100000 = 224 = -32
$E1 = %11100001 = 225 = -31
$E2 = %11100010 = 226 = -30
$E3 = %11100011 = 227 = -29
$E4 = %11100100 = 228 = -28
$E5 = %11100101 = 229 = -27
$E6 = %11100110 = 230 = -26
$E7 = %11100111 = 231 = -25
$E8 = %11101000 = 232 = -24
$E9 = %11101001 = 233 = -23
$EA = %11101010 = 234 = -22
$EB = %11101011 = 235 = -21
$EC = %11101100 = 236 = -20
$ED = %11101101 = 237 = -19
$EE = %11101110 = 238 = -18
$EF = %11101111 = 239 = -17
$F0 = %11110000 = 240 = -16
$F1 = %11110001 = 241 = -15
$F2 = %11110010 = 242 = -14
$F3 = %11110011 = 243 = -13
$F4 = %11110100 = 244 = -12
$F5 = %11110101 = 245 = -11
$F6 = %11110110 = 246 = -10
$F7 = %11110111 = 247 = -9
$F8 = %11111000 = 248 = -8
$F9 = %11111001 = 249 = -7
$FA = %11111010 = 250 = -6
$FB = %11111011 = 251 = -5
$FC = %11111100 = 252 = -4
$FD = %11111101 = 253 = -3
$FE = %11111110 = 254 = -2
$FF = %11111111 = 255 = -1

